High-grading effects on Scots pine volume and basal area in pure stands in northern Spain

Felipe Bravoa* and Gregorio Monterob

a Dept. de Producción Vegetal y Silvopascicultura, University of Valladolid, Campus at Palencia, Avda. de Madrid, 44, 34004 Palencia, Spain
b CIFOR-INIA, PO Box 8011, 28080 Madrid, Spain

(Received 24 January 2002; accepted 25 March 2002)

Abstract – A yield model for formerly high-graded Scots pine stands in a transitional climatic area in northern Spain has been developed. High grading practices were used broadly during the last decades. In the past years, the silvicultural system has switched to a conventional even-aged system. A modeling approach is used to understand the effects of high-grading on basal area and dominant height. The equations are calibrated to be used in non high-graded stands and in previously high-graded stands when the silvicultural practices are switched. Dominant height and linear models were used to calibrate the original multiplicative model. With these models the effect of high-grading practices upon forest yield was studied. Standing volume decreased due to high-grading over 26% as the rotation age increased in a medium productivity class. The total volume reduction at rotation age was 18%.

Pinus sylvestris / high-grading / yield / Scots pine / Spain

Résumé – Effets du système de coupe à la dimension sur le volume et la surface terrière de peuplements de Pin sylvestre au nord de l’Espagne. On a mis au point un modèle de croissance des peuplements de Pin sylvestre soumis auparavant à ce système dans une région climatique de transition située au nord de l’Espagne. Ce type de sylviculture, consistant à récolter systématiquement les arbres de gros diamètre, a été courant au cours des dernières décennies. Depuis quelques années on abandonne cette méthode pour adopter le traitement en futaille régulière. On a fait appel à l’approche modélisation pour estimer les effets du système de coupe à la dimension sur la surface terrière et la hauteur dominante. Les équations ont été établies de manière à pouvoir être utilisées aussi bien pour les peuplements n’ayant pas été soumis à ce système de coupe que pour ceux qui, l’ayant subi dans le passé, ont bénéficié d’un nouveau traitement. Le modèle multiplicatif d’origine a été calibré selon des modèles linéaires en utilisant la hauteur dominante. On a pu estimer, grâce à ces modèles, l’effet des coupes à la dimension sur la production. On enregistre alors une réduction du volume sur pied de 26 % dans le cas d’une résolution longue et pour une classe de production moyenne. La réduction du volume total produit en fin de révolution s’élève à 18 %.

Pinus sylvestris / coupe à la dimension / rendement / Pin sylvestre / Espagne

1. INTRODUCTION

High-grading is a traditional harvesting practice that over-exploits forests by removing only the dominant trees. In northern Spain, high-grading is usually defined as cutting all commercial trees equal to or larger than 40 cm in diameter, and leaving all non-commercial trees. Although high-grading produces high short-term returns, its negative effects on soil rent, depletion of biological diversity and very poor stand structure [10] have led to its discontinued use as a forest management practice. Dominant height, size-density relationships, diameter distribution and other stand characteristics are affected by high-grading. High-grading reduces stand dominant height and quadratic mean diameter because the biggest trees are harvested. High-grading promotes small gaps that are occupied by young trees and results in a prevalence of codominant and suppressed trees, so the resulting diameter distribution ranges from normal to reverse-J including bimodal shapes. Upon release the understory often exhibits a lag in height and diameter growth [12]. By using high-grading, a high structural diversity can be achieved, but must be considered that a reduction of over a 10 percent in diameter growth rate must be expected in Mediterranean pine stands [1]. Using data sets from high-graded stands to fit growth and yield models, the growth estimation underestimates the actual values of non-high-graded stands. A possible solution is to calibrate the model using independent non high-graded data sets. On the other hand, there are taper differences between dominant and codominant trees. In general, dominant trees have more diameter growth and taper at a given height, resulting in more volume than codominant trees of the same height [9].
In Scots pine stands, high-grading practices have been dis-
continued some years ago but the effects of high-grading on
forest stand structure are still important. Scots pine (*Pinus
sylvestris* L.) is one of the most widespread species around the
world, dominating forest landscapes from boreal areas to
Mediterranean mountains in Europe. Local and regional
research is needed in order to define sustainable forest man-
gagement in these forests. Silvicultural studies of Scots pine
stands in the transitional area in the Southern limit of its distri-
bution are scarce in the relevant literature. The objective of
this study is to explore the influence of high-grading practices
upon forest yield. To accomplish this objective, a yield model
was fitted and calibrated and the behavior of the model with
and without high-grading was studied. Results from this
empirical study can serve to better understand the effects of
high grading.

2. MATERIALS AND METHODS

2.1. Study area

The High Ebro basin (northern Spain) was selected as the study
area because high-grading has had a strong influence on forest stands
in this area. The High Ebro basin is a transitional area for Scots pine
in northern Spain situated between 700 and 900 m a.s.l. The climate
ranges from the Mediterranean to the Atlantic type, with an annual
rainfall of about 800 mm (approximately 15 percent in summer) and
an average temperature of 11.2 °C. In general, the area does not suffer
from pronounced drought or severe frost but these stresses can occa-
sionally occur. Typical interannual variation of temperature and
rainfall of the Mediterranean climate is moderated by the Atlantic
influence. Soils are mostly calcareous cambisols involving luvisols in
humid sites. While in boreal Scots pine stands nutrient levels are the
key to determine site index, in this transitional area soil texture is the
driving factor in site productivity estimation [2]. *Pinus sylvestris* L.
occupies the overstory and the remaining vegetative community is
dominated by a mixture of *Quercus faginea* Lamk., *Fagus sylvatica* L.,
Quercus ilex L., *Calluna vulgaris* (L.) Hull, *Erica sp.*, *Ulex sp.* and
Pteridium aquilinum (L.) Kuch. Beech (*Fagus sylvatica*) is the most
common invading species on the most humid high-graded Scots pine
stands in the study area. Understory species limit Scots pine natural
regeneration [4] by competition for water, especially during dry
years. This indicates the importance of water stress in these stands.

2.2. Data

Data to develop the model came from the Second Spanish Forest
Inventory [5]. The plots of the Second Spanish Forest Inventory
(2SFI) are systematically distributed using a grid of one square kil-

ometer. Each plot consists of four concentric subplots with radius 5,
10, 15 and 25 m. For these subplots, the minimum diameter recorded
(range 20 to 23 in the first forest experiment and between 17
and 20 in the second according to Rojo and Montero [18] and Bravo
and Montero [2] site index curves. A complete description of these
thinning experiments can be found in Río [16] and in Río et al. [17].
Eighty-two observations have been used from the thinning experi-
ments. These two data sets (permanent plots and thinning experi-
ments) were not used to fit the model but to explore its behavior and
calibrate it, respectively.

2.3. Methods

2.3.1. Model structure

The data available for modeling determine both the type of model
that can be developed and the precision of the predictions from the
model. The 2SFI data have the following characteristics: (1) presen-
tly, we have just one measurement, (2) the plot design used four
tpered subplots based upon DBH and, therefore, the density and the
diameter distribution per hectare must be computed from the expan-
sion factors for each subplot, and (3) increment cores were not
extracted from each tree. As a result of these limitations, a whole
stand yield model approach was chosen.

Multiplicative models are based on Mitscherlich’s law or the law
of limiting factors. These types of models have been used previously
to elaborate whole stand models for *Picea abies* [3] and *Pinus sylves-
tris* [14], to estimate diameter distribution parameter dynamics under
different planting densities [9] and to fit crown relations in conifer
species [10]. The general form of the multiplicative model is:

\[Y = \prod_{i=0}^{m} x_i^{\beta_i} \times \prod_{j=2}^{n} x_j^{\beta_j} \times \ldots \times \prod_{k=0}^{n} x_k^{\beta_k} \]

(1)
where Y is the dependent variable, X_i is the ith independent variable and b_0, b_1, b_2 are parameters to be estimated.

The dependent variables used in this study were mean quadratic diameter (dg), basal area (G) and total volume (V) of Scots pine. The independent variables were chosen after a correlation study that rejected the variables that were not significant at $P = 0.001$. The final independent variables used were number of Scots pine stems per ha (N), dominant height (H_0) and the stand density index (SDI). Age was rejected because it is difficult to determine stand age in a mixed structured high graded forest. In addition, site index (SI) was used in the original stands used to elaborate the model and in the stands where the model is going to be used.

We assume that the actual value of the dependent variable can be expressed by equation (9). In addition, we assume that the calibration factor (CF) is distributed normally. The resulting calibration model used is:

$$ y = f(x_1, ..., x_p) + e + CF $$

2.3.2. Parameter estimation

The coefficients for each equation in the model were estimated using non-linear regression and Marquardt’s procedure. As suggested by Ratkowsky [15], parameters from linearization of equations (2), (3) and (4) through the log-log transformation were used as seed values to fit the non-linear parameters.

2.3.3. Model efficiency

The efficiency of the model was studied using the following efficiency factor proposed by Soares et al. [19] and Vanclay et al. [23]:

$$ EF = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} $$

An EF value equal to 1 indicates a perfect fit; an EF value equal to zero indicates a fit that is not better than a simple average; and an EF value under zero indicates a fit that is worse than the average.

The signs of the parameters were examined to detect if they were in accordance with present knowledge of forest yield. To examine the predicted values from the model, the relative residual between observed and estimated values was calculated using the formula:

$$ e_t = \frac{[y_i - \hat{y}_i]}{y_i} \times 100 $$

Because of the mathematical relationship between G and dg, the compatibility between equations (2) and (3) was studied by computing an error term in percentage (et). For example, et for basal area is calculated using:

$$ et = \frac{[y_i - \hat{y}_i]}{y_i} \times 100 $$

where y_i is the observed value for basal area and \hat{y}_i is computed, using predicted mean quadratic diameter (dg) and the number of stems per hectare (N), as:

$$ y_c = \frac{\pi \times dg^2 \times N}{4} $$

In addition predictions from the model were compared with data from permanent plots to further study the model’s behavior.

2.3.4. Model calibration

An important problem in the application of a growth and yield model is its calibration to different forestry practices or to other geographical zones [6]. Different methods have been proposed to calibrate a forest growth and yield model [8, 13]. Calibrating a stand to normal yield tables based on the ratio between actual basal area and basal area from the table is routinely used in practice. This method assumes that the model is correct in shape and the calibration is just a scalar modification. This hypothesis may not be true, especially when there are strong differences between the silvicultural treatments in the original stands used to elaborate the model and in the stands where the model is going to be used.

Before developing the calibration equations the behavior of the yield model was first checked using the thinning data set. If the behavior was judged to be good (using the efficiency factor as an index of behavior), the calibration equations would not be developed.
quadratic diameter was estimated by the model (Eq. (2)) and basal area was calculated using equation (8) (figure 3a). So, the basal area model is preferred over the quadratic diameter model (figure 3b). Comparing predictions from the basal area and volume equations with the actual data from the growth and yield plots, we found that the basal area equation was a better representation of the stand’s dynamics than the volume equation. The volume equation overestimated the actual volume when the dominant height is high and underestimates it otherwise (figure 4). This finding is consistent with the comparisons to the validation data set (figure 1) and with the computed EF values.

3.2. Model calibration

Because the basal area equation had a high EF value, calculated over the permanent plots data set, and good behavior, only the volume equation was calibrated. Screening the independent variables of the volume model (figure 4) found no relationship between SDI and the calibration factor (Eq. (9)). However, there was a linear relationship between dominant height and the calibration factor. The yield model underestimated the actual volume when the dominant height was smaller than 13.71 m and overestimated it otherwise. This result agrees with the general high-grading trend, i.e. cut the biggest trees in the tallest stands and avoid cutting in the youngest and in the poorest stands. The following simple linear model (Eq. (10)) was fitted to the calibrating data and the results are shown in table II:

\[
CF = d_0 + d_1 \times H_0
\]

(10)

The adjusted determination coefficient was 0.9169, the residuals were normally distributed \((P < W: 0.5332)\) with a mean slightly above zero \((0.5077)\). Using this linear equation, the predicted calibration factor is zero when the dominant height is 13.71 m.

The final volume equation (11) has an EF calculated over the permanent plots data set, equal to 0.9856, indicating that its predictions in even-aged stands are more accurate than using the uncalibrated equation.

\[
V = 0.168 \times SDI^{0.913} \times H_0^{0.413} - 215.069 + 15.685 \times H_0
\]

(11)

Comparing yield models with and without calibration factors, we can study the high-grading impact upon forest yield. Equation (4) has been used to simulate high-graded stands, while equation (11) was used to represent standard even-aged silviculture. A medium productivity site (site index 20 m at 100 years) has been simulated, the flag points were 15, 18 and 21 m in dominant height (55, 75 and 129 years old). At each of these periods the stand was partially cut, thinned or high-graded, to reduce the SDI from 1000 to 700, assuming that, on average, one meter increment in dominant height represents an increment of 100 points in SDI [16]. The standing volume reduction due to high-grading at 129 years is over 26% while the total volume reduction is 18%. At 75 years of age the reduction is over 18% of standing volume and almost 15% of total volume (table III).

4. DISCUSSION

In this study, data from a single measurement of permanent plots were analyzed to develop a yield model for high-graded stands. Therefore, continuing studies are needed using repeated measurements from these plots to fully understand the influence of high-grading on forest stand dynamics. Some modifications of the model would be necessary to study the impact of hardwoods on Scots pine yield. Nonetheless, the yield model developed in this study allows, in combination with the appropriate site index curves, to adequately forecast the yield of previously high-graded Scots pine stands in northern Spain.
Dominant height shows a key influence upon high-graded stands evolution. The residual overstory density has a strong influence upon residual tree height growth [11]. From the data of Spanish National Inventory studied we can not know the residual overstory density and, in addition, our permanent plots data set unfortunately do not provide any information about residual overstory density. However, height is the calibrated variable in our model showing its importance on tree’s response to high grading practices. Both age and site index can be expressed by dominant height to some extent. The ability to predict growth variation in even-aged stands is low when both age and site quality are eliminated, however even-aged stand structure is uncommon in high-graded stands.

The calibration factor function improved the volume model estimations in even-aged stands. The linear relationships between the calibration factor and dominant height shows the impact of a high-grading practice that removes the overstory. The gaps created by high-grading are occupied by some young trees, so the basal area model does not need calibration. The reduction in volume we found agree with other studies in Mediterranean pines in stands showing a high structural diversity [1]. As high grading promotes structural diversity both in diameter (figure 5) and height, a yield reduction must be expected. Other modeling strategies such as individual tree model (ITM), would be better models for our purpose than whole stand model. The Forest Vegetation Simulator [22] developed by the US Forest Service or the Oregon Growth and Yield Model (ORGANON) supported by the forestry program at Oregon State University [7] in North America and PROGNAUS (the Austrian variant of PROGNOSIS) which was implemented by Sterba and collaborators [20, 21] in Europe are good example of ITMs that are useful for evaluating silvicultural treatments such as high-grading. However, no data are available in our targeted stands to develop this kind of model.

Table II. Analysis of variance for the simple linear model of calibration factor for high-graded Scots pine stands in northern Spain.

<table>
<thead>
<tr>
<th>Source</th>
<th>Degree of freedom</th>
<th>Squared sum</th>
<th>Mean squared</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>61026.351</td>
<td>61026.351</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>80</td>
<td>5457.157</td>
<td>68.214</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>81</td>
<td>66483.489</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter | Estimated | Standard deviation | \(t \) for \(H_0: \beta = 0 \) | Prob > \(| t | \)
--- | --- | --- | --- | ---
\(d_0 \) | -215.069 | 7.254 | -29.647 | 0.0001
\(d_1 \) | 15.685 | 0.524 | 29.910 | 0.0001

Table III. Total and standing volume in a medium productivity (site index 20 m at 100 years), high-graded and non high-graded Scots pine stands in northern Spain.

<table>
<thead>
<tr>
<th>(H_0) (m)</th>
<th>Age (year)</th>
<th>High-graded</th>
<th>Non high-graded</th>
<th>Reduction (percent)</th>
<th>High-graded</th>
<th>Non high-graded</th>
<th>Reduction (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>55</td>
<td>281.86</td>
<td>302.07</td>
<td>6.69</td>
<td>281.86</td>
<td>302.07</td>
<td>6.69</td>
</tr>
<tr>
<td>18</td>
<td>75</td>
<td>303.90</td>
<td>371.17</td>
<td>18.12</td>
<td>382.24</td>
<td>449.51</td>
<td>14.96</td>
</tr>
<tr>
<td>21</td>
<td>129</td>
<td>323.88</td>
<td>438.20</td>
<td>26.09</td>
<td>492.81</td>
<td>601.00</td>
<td>18.00</td>
</tr>
</tbody>
</table>
so our modeling approach is the only one possible in such a situation (one yield measurement and no increment records). On the other hand, this situation (lack of a strong data set to develop ITMs) is very common around the world and foresters need some kind of orientation to develop their silvicultural strategies in practice. A whole yield model plus an adequate calibration function can serve as a guide for practicing foresters while new models are developed.

Although, as far as we know, there is no literature dealing with economic implications of high-grading, it is clear that the possible financial gain in the first years of a rotation by applying high-grading is surpassed by the problems created in the long run, such as structurally non-equilibrated stands or technologically low-quality standing trees. However, when forest management is oriented to develop structurally complex stands (i.e., in Green Tree Retention practices), costs in terms of timber production and management complexity must be balanced with the gain in other features such as biological diversity or aesthetic considerations. In the climatic transitional area in northern Spain, old high-grading practices allow beech to invade originally pure Scots pine stands improving its aesthetic value. A new growth and yield modeling strategy using individual distance-independent models would be beneficial for modeling these types of stands. The implications of high grading on reduction of timber production have been stated. This result should be used as foundation to avoid high grading in forestry elsewhere and especially in areas where timber production is a well-stated goal. If the goal is promote structural diversity, other silvicultural strategies must be explored.

Figure 3. Error rates estimated dg by the model and calculating G (a) and estimating G and calculating dg (b) by dominant height in high-graded Scots pine stands in northern Spain.

Figure 4. Plot of the calibration factor by SDI and H_0 for the volume model for high-grading Scots pine stands in northern Spain. CF is the calibration factor.
Acknowledgements: The authors wish to thank A. Picardo for his encouragement, S. González, N. Nanos, D. Hann and two anonymous referees for their comments that improved the manuscript, R. Jackson who checked the English version and A. Bravo who helped in the field work.

REFERENCES

[22] USDA, FVS, the forest vegetation simulator, 2000.

To access this journal online:
www.edpsciences.org